skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khalife, Sandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Analyzing lipid assemblies, including liposomes and extracellular vesicles (EVs), is challenging due to their size, diverse composition, and tendency to aggregate. Such vesicles form with a simple phospholipid bilayer membrane, and they play important roles in drug discovery and delivery. The use of mass spectrometry (MS) allows for broad analysis of lipids from different classes; however, their release from the higher order structural aggregates is typically achieved by chemical means. Mechanical disruption by high frequency surface acoustic waves (SAW) is presented as an appealing alternative to preparing lipid vesicles for MS sampling. In this work, SAWs used to disrupt liposomes allow for the direct analysis of their constituent lipids by employing SAW nebulization with corona discharge (CD) ionization. We explore the effects of duration, frequency, and incorporation of nonpolar lipids, including cholesterol, on the SAW’s ability to disrupt the liposome. We also report on the successful MS analysis of liposome-derived lipids along with cytochrome C in solution, thus demonstrating applications to aqueous samples and native MS conditions. 
    more » « less
  2. null (Ed.)